本资料来自专辑:
2024年暑假新九年级上册数学预习精品讲义
第04讲 一元二次方程的解法(因式分解法6种题型)
1.理解用因式分解法解方程的依据。
2.会用因式分解法解一些特殊的一元二次方程。(重点)
3.会根据方程的特点选用恰当的方法解一元二次方程。(难点)
(1)用因式分解法解一元二次方程的步骤
①将方程右边化为0;
②将方程左边分解为两个一次式的积;
③令这两个一次式分别为0,得到两个一元一次方程;
④解这两个一元一次方程,它们的解就是原方程的解.
(2)常用的因式分解法
提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.
要点诠释:
(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;
(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;
(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式。
…………
参考答案
一、单选题
1.D
【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.
【详解】解:∵方程x2+2x﹣3=0的解是x1=1,x2=﹣3,
∴方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,
解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.
【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键。
…………
不错
很有用
怎么下载
刷新一下,点击下载就可以了,如果还是不清楚,可以直接联系客服QQ:20862811
感谢提供