本资料来自专辑:
常州市2023年初中学业水平测试
数学试卷
一、选择题(本大题共8小题,每小题2分,共16分。在每小题所给出的四个选项中,只有一项是正确的)
1.计算a8÷a2的结果是( )
A.a4 B.a6 C.a10 D.a16
2.若代数式的值是0,则实数x的值是( )
A.-1 B.0 C.1 D.2
3.某运动会颁奖台如图所示,它的主视图是( )
4.下列实数中,其相反数比本身大的是( )
A.-2023 B.0 C.1/2023 D.2023
5.2022年10月31日,搭载空间站梦天实验舱的长征五号B遥四运载火箭,在我国文昌航天发射场发射成功.长征五号B运载火箭可提供1078t起飞推力.已知1t起飞推力约等于10000N,则长征五号B运载火箭可提供的起飞推力约为( )
A.1.078×105N B.1.078×106N C.1.078×107N D.1.078×108N
6.在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为( )
A.(-2,-1) B.(2,-1) C.(-2,1) D.(2,1)
7.小明按照以下步骤画线段AB的三等分点:
这一画图过程体现的数学依据是( )
A.两直线平行,同位角相等
B.两条平行线之间的距离处处相等
C.垂直于同一条直线的两条直线平行
D.两条直线被一组平行线所截,所得的对应线段成比例
8.折返跑是一种跑步的形式.如图,在一定距离的两个标志物①、②之间,从①开始,沿直线跑至②处,用手碰到②后立即转身沿直线跑至①处,用手碰到①后继续转身跑至②处,循环进行,全程无需绕过标志物.小华练习了一次2×50m的折返跑,用时18s在整个过程中,他的速度大小v(m/s)随时间t(s)变化的图像可能是( )
…………
21.为合理安排进、离校时间,学校调查小组对某一天八年级学生上学、放学途中的用时情况进行了调查.本次调查在八年级随机抽取了20名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:
(1)根据图中信息,下列说法中正确的是______(写出所有正确说法的序号):
①这20名学生上学途中用时都没有超过30min;
②这20名学生上学途中用时在20min以内的人数超过一半;
③这20名学生放学途中用时最短为5min;
④这20名学生放学途中用时的中位数为15min.
(2)已知该校八年级共有400名学生,请估计八年级学生上学途中用时超过25min的人数;
(3)调查小组发现,图中的点大致分布在一条直线附近.请直接写出这条直线对应的函数表达式并说明实际意义.
22.在5张相同的小纸条上,分别写有:①;②;③1;④乘法;⑤加法.将这5张小纸条做成5支签,①、②、③放在不透明的盒子A中搅匀,④、⑤放在不透明的盒子B中搅匀.
(1)从盒子A中任意抽出1支签,抽到无理数的概率是______;
(2)先从盒子A中任意抽出2支签,再从盒子B中任意抽出1支签,求抽到的2个实数进行相应的运算后结果是无理数的概率.
23.如图,B、E、C、F是直线l上的四点,AB=DE,AC=DF,BE=CF.
(1)求证:△ABC≌△DEF;
(2)点P、Q分别是△ABC、△DEF的内心。
①用直尺和圆规作出点Q(保留作图痕迹,不要求写作法);
②连接PQ,则PQ与BE的关系是________.
24.如图,在打印图片之前,为确定打印区域,需设置纸张大小和页边距(纸张的边线到打印区域的距离),上、下,左、右页边距分别为a cm、b cm、c cm、d cm.若纸张大小为16cm×10cm,考虑到整体的美观性,要求各页边距相等并使打印区域的面积占纸张的70%,则需如何设置页边距?
25.在平面直角坐标系中,一次函数y=kx+b的图像与反比例函数y=m/x的图像相交于点A(2,4)、B(4,n).C是y轴上的一点,连接CA、CB.
(1)求一次函数、反比例函数的表达式;
(2)若△ABC的面积是6,求点C的坐标。
26.对于平面内的一个四边形,若存在点O,使得该四边形的一条对角线绕点O旋转一定角度后能与另一条对角线重合,则称该四边形为“可旋四边形”,点O是该四边形的一个“旋点”.例如,在矩形MNPQ中,对角线MP、NQ相交于点T,则点T是矩形MNPQ的一个“旋点”.
(1)若菱形ABCD为“可旋四边形”,其面积是4,则菱形ABCD的边长是_______;
(2)如图1,四边形ABCD为“可旋四边形”,边AB的中点O是四边形ABCD的一个“旋点”.求∠ACB的度数;
(3)如图2,在四边形ABCD中,AC=BD,AD与BC不平行.四边形ABCD是否为“可旋四边形”?请说明理由.
27.如图,二次函数y=1/2x2+bx-4的图像与x轴相交于点A(-2,0)、B,其顶点是C.
(1)b=_______;
(2)D是第三象限抛物线上的一点,连接OD;将原抛物线向左平移,使得平移后的抛物线经过点D,过点(k,0)作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;
(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知△PCQ是直角三角形,求点P的坐标.
28.如图1,小丽借助几何软件进行数学探究:第一步,画出矩形ABCD和矩形EFGH,点E、F在边AB上(EF<AB),且点C、D、G、H在直线AB的同侧;第二步,设置,矩形EFGH能在边AB上左右滑动;第三步,画出边EF的中点O,射线OH与射线AD相交于点P(点P、D不重合),射线OG与射线BC相交于点Q(点Q、C不重合),观测DP、CQ的长度.
(1)如图2,小丽取AB=4,EF=3,m=1,n=3,滑动矩形EFGH,当点E、A重合时,CQ=______;
(2)小丽滑动矩形EFGH,使得O恰为边AB的中点.她发现对于任意的m≠n,DP=CQ总成立。请说明理由;
(3)经过数次操作,小丽猜想,设定m、n的某种数量关系后,滑动矩形EFGH,DP=CQ总成立。小丽的猜想是否正确?请说明理由。
…………
参考答案
一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)
1.B
【解析】利用同底数幂的除法进行解题即可。
【详解】解:a8÷a2=a8-2=a6,故选B.
【点睛】本题考查同底数的幂的除法,掌握运算法则是解题的关键。
2.B
【解析】由x=0,x2-1≠0即可求解。
…………
不错
很有用
怎么下载
刷新一下,点击下载就可以了,如果还是不清楚,可以直接联系客服QQ:20862811
感谢提供