本资料来自专辑:苏科版七年级下册数学尖子生同步培优
专题9.9以乘法公式为背景的综合问题(重难点培优)
姓名:________ 班级:________得分:________
1.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的等式表示) .
(2)若(3x﹣2y)2=5,(3x+2y)2=9,求xy的值;
(3)若2x+y=5,xy=2,求2x﹣y的值.
2.完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因为a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根据上面的解题思路与方法,解决下列问题:
(1)若x+y=8,x2+y2=40,求xy的值;
(2)①若(4﹣x)x=5,则(4﹣x)2+x2= ;
②若(4﹣x)(5﹣x)=8,则(4﹣x)2+(5﹣x)2= ;
(3)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.
3.(2020春•淮安区期末)乘法公式的探究及应用.
数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
(1)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系. ;
(2)若要拼出一个面积为(a+2b)(a+b)的矩形,则需要A号卡片1张,B号卡片2张,C号卡片 张.
(3)根据(1)题中的等量关系,解决问题:已知:a+b=5,a2+b2=13,求ab的值.
4.有两根同样长的铁丝.
(1)将两根铁丝分别围成一个长方形和一个正方形(无剩余).
①若其中长方形的长为5cm,宽为3cm,则正方形的边长为 cm;
②设其中长方形的长为xcm,宽为ycm,则正方形的边长为 cm(用含x、y的代数式表示);
③若长方形的长比宽多acm,用含a的代数式表示正方形面积与长方形面积的差S(写出过程);
(2)将其中一根铁丝剪成两段,用这两段分别围成两个正方形拼成如图所示的形状(在同一水平线上,两正方形无重叠),若铁丝总长为28cm,两个正方形面积和为25cm2,则阴影部分面积为 cm2.
5.(2020春•东海县期末)[阅读理解]我们常将一些公式变形,以简化运算过程.
如,可以把公式“(a+b)2=a2+2ab+b2”变形成a2+b2=(a+b)2﹣2ab或2ab=(a+b)2﹣(a2+b2)等形式,运用于下面这个问题的解答:
问题:若x满足(20﹣x)(x﹣30)=10,求(20﹣x)2+(x﹣30)2的值.
我们可以作如下解答:设a=20﹣x,b=x﹣30,则(20﹣x)(x﹣30)=ab=10,a+b=(20﹣x)+(x﹣30)=20﹣30=﹣10.所以(20﹣x)2+(x﹣30)2=a2+b2=(a+b)2﹣2ab=(﹣10)2﹣2×10=80.
请根据你对上述内容的理解,解答下列问题:
(1)若x满足(80﹣x)(x﹣70)=﹣10,则(80﹣x)2+(x﹣70)2的值为 .
(2)若x满足(2020﹣x)2+(2017﹣x)2=4051,则(2020﹣x)(2017﹣x)的值为 .
(3)如图,将正方形EFGH叠放在正方形ABCD上,重叠部分LFKD是一个长方形,AL=8,CK=12.沿着LD、KD所在直线将正方形EFGH分割成四个部分,若四边形ELDN和四边形DKGM恰好为正方形,且它们的面积之和为400,求长方形NDMH的面积.
6.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)探究:上述操作能验证的等式是 ;(请选择正确的一个)
A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)
(2)应用:利用你从(1)选出的等式,完成下列各题:
①已知9x2﹣4y2=24,3x+2y=6,求3x﹣2y的值;
②计算:.
7.乘法公式的探究及应用.
(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 .(写成多项式乘法的形式)
(3)比较左、右两图的阴影部分面积,可以得到乘法公式 .(用式子表达)
(4)运用你所得到的公式,计算下列各题:
①10.3×9.7
②(2m+n﹣p)(2m﹣n+p)
8.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是 .(请选择正确的选项)
A.a2﹣b2=(a+b)(a﹣b)
B.a2﹣2ab+b2=(a﹣b)2
C.a2+ab=a(a+b)
(2)若x2﹣y2=16,x+y=8,求x﹣y的值;
(3)计算:(1)(1)(1)…(1)(1).
9.从边长为a的正方形剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是 (请选择正确的一个)
A.a2﹣2ab+b2=(a﹣b)2
B.a2﹣b2=(a+b)(a﹣b)
C.a2+ab=a(a+b)
(2)若x2﹣9y2=12,x+3y=4,求x﹣3y的值;
(3)计算:(1)(1)(1)…(1)(1).
10.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)探究:上述操作能验证的等式是: (请选择正确的一个).
A.a2﹣b2=(a+b)(a﹣b)B.a2+ab=a(a+b)C.a2﹣2ab+b2=(a﹣b)2
(2)应用:利用你从(1)选出的等式,完成下列各题:
①已知4x2﹣9y2=24,2x+3y=8,求2x﹣3y的值;
②计算:.
11.【探究】如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式 .(用含a,b的等式表示)
【应用】请应用这个公式完成下列各题:
(1)已知4m2=12+n2,2m+n=4,则2m﹣n的值为 .
(2)计算:20192﹣2020×2018.
【拓展】
计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.
12.【知识情景】通常情况下,用两种不同的方法计算同一个图形的面积.
(1)如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个长方形(如图2).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是 .
【拓展探究】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.如图3是边长为a+b的正方体,被如图所示的分割线分成8块.
(2)用不同的方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式可以为 ;
(3)已知a+b=4,ab=2,利用上面的恒等式求a3+b3的值.
13.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是 ;(请选择正确的一个)
A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)
(2)应用你从(1)选出的等式,完成下列各题:
①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.
②计算:(1)(1)(1)…(1)(1).
14.(1)如图1,阴影部分的面积是 .(写成平方差的形式)
(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是 .(写成多项式相乘的积形式)
(3)比较两图的阴影部分的面积,可以得到公式: .
(4)应用公式计算:(1)(1)(1)(1)…(1)(1).
15.如图,将边长为a的正方形按虚线剪成4个部分,去掉其中边长为b的小正方形,将剩余的3个部分重新拼成一个互不重叠且无缝隙的长方形.
(1)画出拼好的长方形,并标注相应的数据;
(2)求拼好后长方形的周长;
(3)若a=9,b=3,求拼好后长方形的面积.
16.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个长方形.
(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;
(2)请写出上述过程所揭示的乘法公式;
(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.
17.如图摆放两个正方形,它们的周长之和为24、面积之和为20,求阴影部分的面积.
18.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)图2中的阴影部分的面积为 ;
(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是 ;
(3)若x+y=﹣6,xy=2.75,求x﹣y;
(4)观察图3,你能得到怎样的代数恒等式呢?
19.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
①图2中的阴影部分的面积为 ;
②观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 ;
③根据(2)中的结论,若x+y=5,x•y,则(x﹣y)2= ;
④实际上通过计算图形的面积可以探求相应的等式.
如图3,你发现的等式是 .
20.如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形
(1)你认为图2中的阴影部分的正方形的边长等于多少?
(2)请用两种不同的方法求图2中阴影部分的面积.
方法1:
方法2:
(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn.
(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2= .
参考答案
1.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的等式表示) 4xy=(x+y)2﹣(x﹣y)2 .
(2)若(3x﹣2y)2=5,(3x+2y)2=9,求xy的值;
(3)若2x+y=5,xy=2,求2x﹣y的值.
【分析】(1)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x﹣y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;
(2)将(3x﹣2y)2=5,(3x+2y)2=9,代入(1)中的等式可求解;
(3)将2x+y=5,xy=2,代入(1)中的等式可求解;
【解析】(1)4xy=(x+y)2﹣(x﹣y)2;
(2)∵(3x+2y)2﹣(3x﹣2y)2=24xy=9﹣5,
∴xy;
(3)∵(2x+y)2﹣(2x﹣y)2=8xy,
∴25﹣16=(2x﹣y)2,
∴2x﹣y=±3.
…………
9.9 以乘法公式为背景的综合问题(重难点培优)-苏科版七年级下册数学第9章《整式的乘法与因式分解》尖子生同步培优(附答案解析)
不错
很有用
怎么下载
刷新一下,点击下载就可以了,如果还是不清楚,可以直接联系客服QQ:20862811
感谢提供