资料来自专辑:苏科版七年级下册数学尖子生同步培优
专题7.8有关三角形的角的计算与证明专题培优
姓名:__________________ 班级:______________ 得分:_________________
一.解答题(共20小题)
1.(2020春•仪征市期末)已知△ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°.
(1)如图,当点P在△ABC内时,
①若y=70,s=10,t=20,则x= ;
②探究s、t、x、y之间的数量关系,并证明你得到的结论.
(2)当点P在△ABC外时,直接写出s、t、x、y之间所有可能的数量关系,并画出相应的图形.
2.(2020春•扬中市期中)如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.
(1)如果∠A=80°,求∠BPC的度数;
(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.
(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.
3.(2019春•常熟市月考)好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在△ABC中,∠BAC=48°,点I是两角∠ABC、∠ACB的平分线的交点.
(1)填空:∠BIC= °.
(2)若点D是两条外角平分线的交点,填空:∠BDC= °.
(3)若点E是内角∠ABC、外角∠ACG的平分线的交点,试探索:∠BEC与∠BAC的数量关系,并说明理由.
(4)在问题(3)的条件下,当∠ACB等于 度时,CE∥AB?
4.(2019春•宝应县期中)如图,在Rt△ABC中,∠ACB=90°,∠A=34°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.
(1)求∠CBE的度数;
(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
5.(2019春•常熟市期中)在△ABC中,点D为边BC上一点,请回答下列问题:
(1)如图1,若∠DAC=∠B,△ABC的角平分线CE交AD于点F,试说明∠AEF=∠AFE;
(2)在(1)的条件下,如图2,△ABC的外角∠ACQ的角平分线CP交BA的延长线于点P,∠P与∠CFD有怎样的数量关系?为什么?
(3)如图3,点P在BA的延长线上,PD交AC于点F,且∠CFD=∠B,PE平分∠BPD,过点C作CE⊥PE,垂足为E,交PD于点G,试说明CE平分∠ACB.
6.如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.
7.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=50°,∠BDC=70°,求∠BED的度数.
8.如图,在△ABC中,点E在AC上,∠AEB=∠ABC.
(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD=∠ADC;
(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?
9.在△ABC中,∠ADB=100°,∠C=80°,∠BAD∠DAC,BE平分∠ABC,求∠BED的度数.
10.如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.
(1)求∠B的度数;
(2)若∠BAC=70°,判断△ABC的形状,并说明理由.
11.如图:已知△ABC与△DEF是一副三角板的拼图,A,E,C,D在同一条线上.
(1)求证EF∥BC;
(2)求∠1与∠2的度数.
12.如图,△ABC的角平分线BD、CE相交于点P.
(1)若∠ABC=50°,∠ACB=70°,则∠A= °;
(2)若∠A=80°,试求∠BPC的度数;
(3)试直接写出∠DPC与∠A之间的数量关系:∠DPC= .
13.(1)如图1的图形我们把它称为“8字形”,则∠A、∠B、∠C、∠D之间的数量关系为 ;
(2)如图2,AP、CP分别平分∠BAD、∠BCD.
①图中有 个“8字形”;
②若∠B=36°,∠D=14°,求∠P的度数;
(3)如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,求∠P、∠B、∠D之间的数量关系.
14. Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点P在线段AB上,如图(1)所示,且∠α=30°,则∠1+∠2= °;
(2)若点P在AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.
(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.
(4)若点P运动到△ABC之外,如图(4)所示,则∠α、∠1、∠2的关系为: .
15.(2020春•徐州期末)△ABC中,∠C=70°,点D、E分别是△ABC边AC、BC上的两个定点,点P是平面内一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
初探:
(1)如图1,若点P在线段AB上运动,
①当∠α=60°时,则∠1+∠2= °;
②∠α、∠1、∠2之间的关系为: .
再探:
(2)若点P运动到边AB的延长线上,如图2,则∠α、∠1、∠2之间有何关系?并说明理由.
拓展:
(3)请你试着给出一个点P的其他位置,在图3中补全图形,并写出此时∠α、∠1、∠2之间的关系: .
16.(2020春•淮安区期中)在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120°、40°、20°的三角形是“灵动三角形”;三个内角分别为80°、75°、25°的三角形也是“灵动三角形”等等.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(规定0°<∠OAC<90°).
(1)∠ABO的度数为 °,△AOB .(填“是”或“不是”)“灵动三角形”;
(2)若∠BAC=70°,则△AOC (填“是”或“不是”)“灵动三角形”;
(3)当△ABC为“灵动三角形”时,求∠OAC的度数.
17.(2020春•常州期中)如图,在△ABC中,∠ACB=90°,∠ABC与∠BAC的角平分线相交于点P,连接CP,过点P作DE⊥CP分别交AC、BC于点D、E,
(1)若∠BAC=40°,求∠APB与∠ADP度数;
(2)探究:通过(1)的计算,小明猜测∠APB=∠ADP,请你说明小明猜测的正确性(要求写出过程).
18.(2020春•宝应县期末)(1)如图1,AD平分∠BAC,AE⊥BC,∠B=30°,∠C=70°.
①∠BAC= °,∠DAE= °;
②如图2.若把“AE⊥BC”变成“点F在AD的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数;
(2)如图3,AD平分∠BAC,AE平分∠BEC,∠C﹣∠B=40°,求∠DAE的度数.
19.(2020春•泰兴市校级期中)直线MN与直线PQ相交于O,∠POM=60°,点A在射线OP上运动,点B在射线OM上运动.
(1)如图1,∠BAO=70°,已知AE、BE分别是∠BAO和∠ABO角的平分线,试求出∠AEB的度数.
(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.
(3)在(2)的条件下,在△CDE中,如果有一个角是另一个角的2倍,请直接写出∠DCE的度数.
20.(2020春•江阴市期末)如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD于点F.
(1)求证:∠AEF=∠AFE;
(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.
参考答案
一.解答题(共20小题)
1.【分析】(1)①利用三角形的内角和定理即可解决问题;
②结论:x=y+s+t.利用三角形内角和定理即可证明;
(2)分6种情形分别求解即可解决问题;
【解析】(1)①∵∠BAC=70°,
∴∠ABC+∠ACB=110°,
∵∠PBA=10°,∠PCA=20°,
∴∠PBC+∠PCB=80°,
∴∠BPC=100°,
∴x=100,
故答案为100.
②结论:x=y+s+t.
理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,
∴∠A+∠PBA+∠PCA=∠BPC,
∴x=y+s+t.
(2)s、t、x、y之间所有可能的数量关系:
如图1:s+x=t+y;
…………
7.8 有关三角形的角的计算与证明(重难点培优)-苏科版七年级下册数学第7章《平面图形的认识(二)》尖子生同步培优(附答案解析)下载:
不错
很有用
怎么下载
刷新一下,点击下载就可以了,如果还是不清楚,可以直接联系客服QQ:20862811
感谢提供