第五单元平面直角坐标系知识点汇总
一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念
1、平面直角坐标系:
(1)定义:在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
(2)坐标轴:其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。
(3)原点:它们的公共原点O称为直角坐标系的原点。
(4)坐标平面:建立了直角坐标系的平面,叫做坐标平面。
2、象限:
(1)定义:为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
(2)注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念:
(1)对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
(2)点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
(3)平面内点的坐标是有序实数对,当a≠b时,(a,b)和(b,a)是两个不同点的坐标。
(4)平面内点的与有序实数对(坐标)是一一对应的关系。
4、不同位置的点的坐标的特征:
(1)各象限内点的坐标的特征:
①点P(x,y)在第一象限:x>0,y>0; 点P(x,y)在第二象限:x<0,y>0。
②点P(x,y)在第三象限:x<0,y<0; 点P(x,y)在第四象限:x>0,y<0。
(2)坐标轴上的点的特征:
①点P(x,y)在x轴上:y=0,x为任意实数。
②点P(x,y)在y轴上:x=0,y为任意实数。
③点P(x,y)既在x轴上,又在y轴上:即是原点坐标为(0,0)。
(3)两条坐标轴夹角平分线上点的坐标的特征:
①点P(x,y)在第一、三象限夹角平分线(直线y=x)上:x与y相等。
②点P(x,y)在第二、四象限夹角平分线(直线y=–x)上:x与y互为相反数。
(4)和坐标轴平行的直线上点的坐标的特征:
①位于平行于x轴的直线上的各点的纵坐标相同。
②位于平行于y轴的直线上的各点的横坐标相同。
(5)关于x轴、y轴或原点对称的点的坐标的特征:
①点P与点p’关于x轴对称:横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)。
②点P与点p’关于y轴对称:纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)。
③点P与点p’关于原点对称:横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)。
(6)点P(x,y)到坐标轴及原点的距离:
①点P(x,y)到x轴的距离等于|y|。
②点P(x,y)到y轴的距离等于|x|。
不错
很有用
怎么下载
刷新一下,点击下载就可以了,如果还是不清楚,可以直接联系客服QQ:20862811
感谢提供